
CS130A

Discussion 1

06/22/2011

Outline

• Time complexity

– Notation

– Maximum subsequence sum problem

• 4 algorithms (O(N3), O(N2), O(NlogN), O(N))

• Tries

• In class exercise

Asymptotically less than or equal to O (Big-Oh)

Asymptotically greater than or equal to Ω (Big-Omega)

Asymptotically equal to θ (Big-Theta)

Notation

Review on typical growth rates

• Examples:

– N2

logN

(logN)2

NlogN

N

N3

2N

C
Exponential2N

CubicN3

QuadraticN2

NlogN

LinearN

Log-squaredLog2N

LogarithmicLog N

ConstantC

NameFunction

Max Subsequence ProblemMax Subsequence Problem

� Given a sequence of integers A1, A2, 7, An, find the maximum possible value

of a subsequence Ai, 7, Aj.

� Numbers can be negative.

� You want a contiguous chunk with largest sum.

� Example: -2, 11, -4, 13, -5, -2

� The answer is 20 (subseq. A2 through A4).

� We will discuss 4 different algorithms, with time complexities O(n3), O(n2),

O(n log n), and O(n).

� With n = 106, algorithm 1 may take > 10 years; algorithm 4 will take a fraction

of a second!

int maxSum = 0;

for(int i = 0; i < a.size(); i++)
for(int j = i; j < a.size(); j++)
{

int thisSum = 0;
for(int k = i; k <= j; k++)

thisSum += a[k];
if(thisSum > maxSum)

maxSum = thisSum;
}
return maxSum;

Algorithm 1 for Max Subsequence SumAlgorithm 1 for Max Subsequence Sum

� Given A1,�,An , find the
maximum value of Ai+Ai+1+���+Aj

0 if the max value is negative

∑
−

=

−+−
=+−

1

2

))(1(
)1(

N

ij

iNiN
ij

� Time complexity: O(n3)

)1(O

)1(O

)1(O

)1(O

∑
−

=

++
=

−+−1

0

23

6

23

2

))(1(N

i

NNNiNiN∑ ∑ ∑
−

=

−

= =

1

0

1

1
N

i

N

ij

j

ik

∑
=

+−=

j

ik

ij 11

1 2 3

1

2

3

Algorithm 2Algorithm 2

� Idea: Given sum from i to j-1, we can compute the sum from i

to j in constant time.

� This eliminates one nested loop, and reduces the running

time to O(n2).

into maxSum = 0;

for(int i = 0; i < a.size(); i++)
int thisSum = 0;
for(int j = i; j < a.size(); j++)
{
thisSum += a[j];
if(thisSum > maxSum)
maxSum = thisSum;

}
return maxSum;

∑ ∑
=

−

=

+=

j

ik

j

ik

kjk AAA
1

Algorithm 3Algorithm 3

� This algorithm uses divide-and-conquer paradigm.

� Suppose we split the input sequence at midpoint.

� The max subsequence is entirely in the left half, entirely

in the right half, or it cross the midpoint

� If it spans the middle, then it includes the max

subsequence in the left ending at the center and the

max subsequence in the right starting from the center

Algorithm 3 (cont.)Algorithm 3 (cont.)

� Maximum subsequence can be

� In Left

� In Right

� In the middle:
� Largest sum in L ending with middle element + largest sum in R beginning with

middle element

� Example:

left half | right half

4 -3 5 -2 | -1 2 6 -2

� Max in left is 6 (A1 through A3); max in right is 8 (A6 through A7). But
crossing max is 11 (A1 thru A7)

Solved recursively

Algorithm 3 (cont.)Algorithm 3 (cont.)

Algorithm 3: AnalysisAlgorithm 3: Analysis

� Let T(n) be the time it takes to solve for a maximum

subsequence sum problem of size n

� The divide and conquer is best analyzed through

recurrence:

T(1) = 1 //constant time

T(n) = 2T(n/2) + O(n)

� This recurrence solves to T(n) = O(n log n).

Algorithm 4Algorithm 4

� Time complexity clearly O(n)

� But why does it work?

int maxSum = 0, thisSum = 0;

for(int j = 0; j < a.size(); j++)
{

thisSum += a[j];

if (thisSum > maxSum)
maxSum = thisSum;

else if (thisSum < 0)
thisSum = 0;

}
return maxSum;

}

The algorithm resets
whenever prefix is < 0.
Otherwise, it forms new
sums and updates
maxSum in one pass.

Intuition

� One observation is that if a[i] is negative, then it cannot possibly be
the start of the optimal subsequence, since any subsequence that
begins with a[i] would improved by beginning with a[i+1]

� Ex: -2 11 -4 13 -5 -2

� Similarly any negative subsequence cannot possibly be a prefix of
the optimal subsequence (same logic)

� If we detect that the subsequence from a[i] to a[j] is negative in
the inner loop, we can advance i. The crucial thing is that not only
we can advance i to i+1, but all the way to j+1

Outline

�Time complexity

� Notation

� Maximum subsequence sum problem

� 4 algorithms (O(N3), O(N2), O(NlogN), O(N))

�Tries

� In class exercise

Trie

� Prefix tree

� an ordered tree data structure that is used to store an
associative array where the keys are usually strings

� Time to insert, or to delete or to find is almost identical because
the code paths followed for each are almost identical

� More space efficient when they contain a large number of short
keys, because nodes are shared between keys with common initial
subsequences.

� Slower if the data is directly accessed on a hard disk drive or some
other secondary storage device

Trie implementation

Trie example

Trie Delete

bool Trie::Delete(char x[], int i, TrieNode *current){

if (current != 0)

{if (x[i] == '\0') //if at the end of a string

{current -> UnSetStrEnds();

if (CheckTrieNodeEmpty(current))

{delete current; return true;} }

else {

if (Delete(x,i+1,current->GetPtr(x[i] - 'a')))

{

current->SetPtr(x[i] - 'a', 0); //set the entry of current node to Null

if (i != 0 && CheckTrieNodeEmpty(current)) //not to delete the root

{delete current; return true;}

}

}

}

return false;

}

Outline

�Time complexity

� Notation

� Maximum subsequence sum problem

� 4 algorithms (O(N3), O(N2), O(NlogN), O(N))

�Tries

� In class exercise

Reference

• Data structure and algorithm analysis in C++ (3rd)

• Professor Suri’s lecture note
– http://www.cs.ucsb.edu/~suri/cs130a/cs130a.html

• Professor Qu’s lecture note
– http://www.cs.ust.hk/~huamin/COMP171/index.htm

• Lara Deek’s slide on TrieNode and Trie

