CS130A

Discussion 1
06/22/2011

Outine

- Time complexity
- Notation
- Maximum subsequence sum problem
- 4 algorithms ($\mathrm{O}\left(\mathrm{N}^{3}\right), \mathrm{O}\left(\mathrm{N}^{2}\right), \mathrm{O}(\mathrm{Nlog} \mathrm{N}), \mathrm{O}(\mathrm{N})$)
- Tries
- In class exercise

Notation

Asymptotically less than or equal to
Asymptotically greater than or equal to
Asymptotically equal to

O (Big-Oh)
Ω (Big-Omega)
θ (Big-Theta)

Review on typical growth rates

- Examples:
- N^{2}
$\log N$
$\left(\log N^{2}{ }^{2}\right.$
NogN
N
N^{3}
2^{N}
C

Function	Name
C	Constant
Log N	Logarithmic
Log $^{2} \mathrm{~N}$	Log-squared
N	Linear
$\mathrm{N} \log \mathrm{N}$	
N^{2}	Quadratic
N^{3}	Cubic
2^{N}	Exponential

Max Subsequence Problem

- Given a sequence of integers $A 1, A 2, \ldots, A n$, find the maximum possible value of a subsequence $\mathrm{Ai}, \ldots, \mathrm{Aj}$.
- Numbers can be negative.
- You want a contiguous chunk with largest sum.
- Example: -2, 11, $-4,13,-5,-2$
- The answer is 20 (subseq. A2 through A4).
- We will discuss 4 different algorithms, with time complexities $O\left(n^{3}\right), O\left(n^{2}\right)$, $O(n \log n)$, and $O(n)$.
- With $\mathrm{n}=10^{6}$, algorithm 1 may take > 10 years; algorithm 4 will take a fraction of a second!

Algorithm 1 for Max Subsequence Sum

- Given A_{1}, \ldots, A_{n}, find the maximum value of $A_{i}+A_{i+1}+\cdots+A_{j}$ 0 if the max value is negative
int maxSum = 0; $\quad \downarrow O(1)$
for(int i=0; $\mathbf{i}<$ a.size(); i++)
for(int j = i; j < a.size(); j++)
\{ int thisSum =0; $\quad \downarrow(1)$
for (int $k=i ; k<=j ; k++$)
thisSum += a[k];
if(thisSum > maxSum) $\uparrow O(1)$
maxSum = thisSum; ${ }^{-}$
\}
return maxSum;
$1 \sum_{k=i}^{j} 1=j-i+1$
- Time complexity: $O\left(n^{3}\right)$

$$
\sum_{i=1}^{1} \sum_{\sum_{1}^{1}}^{1} \sum_{1=1}^{1}
$$

$$
2 \quad \sum_{j=i}^{N-1}(j-i+1)=\frac{(N-i+1)(N-i)}{2}
$$

$$
3 \quad \sum_{i=0}^{N-1} \frac{(N-i+1)(N-i)}{2}=\frac{N^{3}+3 N^{2}+2 N}{6}
$$

Algorithm 2

- Idea: Given sum from i to $j-1$, we can compute the sum from i to j in constant time.

$$
\sum_{k=i}^{j} A_{k}=A_{j}+\sum_{k=i}^{j-1} A_{k}
$$

- This eliminates one nested loop, and reduces the running time to $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

```
into \(\operatorname{maxSum}=\mathbf{0}\);
for( int i = 0; i < a.size( ); i++ )
    int thisSum = 0;
    for( int j = i; j < a.size( ); j++ )
    \{
        thisSum += a[j];
        if( thisSum > maxSum )
        maxSum = thisSum;
    \}
return maxSum;
```


Algorithm 3

- This algorithm uses divide-and-conquer paradigm.
- Suppose we split the input sequence at midpoint.
- The max subsequence is entirely in the left half, entirely in the right half, or it cross the midpoint
\square If it spans the middle, then it includes the max subsequence in the left ending at the center and the max subsequence in the right starting from the center

Algorithm 3 (cont.)

- Maximum subsequence can be
\square In Left
\square In Right
Solved recursively

combine
- Largest sum in L ending with middle element + largest sum in R beginning with middle element
- Example:

\[

\]

- Max in left is 6 (A1 through A3); max in right is 8 (A6 through A7). But crossing max is 11 (A1 thru A7)

Algorithm 3 (cont.)

static int
MaxSubSum (const int $A[$], int Left, int Right)
\{
int MaxLeftSum, MaxRightSum;
int MaxLeftBorderSum, MaxRightBorderSum;
int LeftBorderSum, RightBorderSum;
int Center, i;
if(Left $==$ Right) $/ *$ Base Case */
if ($A[$ Left] > 0)
return $A[$ Left];
else
return 0;
Center $=($ Left + Right $) / 2$;
MaxLeftSum $=$ MaxSubSum (A, Left, Center);
MaxRightSum $=$ MaxSubSum (A, Center +1 , Right) :
MaxLeftBorderSum $=0 ;$ LeftBorderSum $=0$
for ($\mathbf{i}=$ Center; $i>=$ Left; i--)
\{
LeftBorderSum $+=A[$ i $]$;
if (LeftBorderSum > MaxLeftBorderSum)
MaxLeftBorderSum $=$ LeftBorderSum;
\}
MaxRightBorderSum $=0 ;$ RightBorderSum $=0 ;$
for ($\mathbf{i}=$ Center +1 ; $\mathbf{i}=$ Right; i++)
\{
RightBorderSum $+=A[$ i $]$;
if (RightBorderSum > MaxRightBorderSum)
MaxRightBorderSum $=$ RightBorderSum;
\}
return Max3 (MaxLeftSum, MaxRightSum,
MaxLeftBorderSum + MaxRightBorderSum);
\}

Algorithm 3: Analysis

- Let $T(n)$ be the time it takes to solve for a maximum subsequence sum problem of size n
- The divide and conquer is best analyzed through recurrence:

$$
\begin{aligned}
& \mathrm{T}(1)=1 \quad \text { //constant time } \\
& \mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{O}(\mathrm{n})
\end{aligned}
$$

- This recurrence solves to $T(n)=O(n \log n)$.

Algorithm 4

$$
\text { int maxSum }=0 \text {, thisSum }=0 \text {; }
$$

for(int j = 0; j < a.size(); j++)

$$
\{
$$

thisSum += a[j];
if (thisSum > maxSum) maxSum = thisSum; else if (thisSum < 0) thisSum = 0;
\}

The algorithm resets whenever prefix is < 0 . Otherwise, it forms new sums and updates maxSum in one pass.

- Time complexity clearly $O(n)$
-But why does it work?

Intuition

- One observation is that if $a[i]$ is negative, then it cannot possibly be the start of the optimal subsequence, since any subsequence that begins with a[i] would improved by beginning with $a[i+1]$
ロ Ex: -2 $111 \begin{array}{lllll}-4 & 13 & -5 & -2\end{array}$
- Similarly any negative subsequence cannot possibly be a prefix of the optimal subsequence (same logic)
- If we detect that the subsequence from $a[i]$ to $a[j]$ is negative in the inner loop, we can advance i . The crucial thing is that not only we can advance i to $\mathrm{i}+1$, but all the way to $\mathrm{j}+1$

Outline

- Time complexity
\square Notation
\square Maximum subsequence sum problem - 4 algorithms ($\mathrm{O}\left(\mathrm{N}^{3}\right), \mathrm{O}\left(\mathrm{N}^{2}\right), \mathrm{O}(\mathrm{Nlog} \mathrm{N}), \mathrm{O}(\mathrm{N})$)
-Tries
- In class exercise

Trie

- Prefix tree
\square an ordered tree data structure that is used to store an associative array where the keys are usually strings
- Time to insert, or to delete or to find is almost identical because the code paths followed for each are almost identical
- More space efficient when they contain a large number of short keys, because nodes are shared between keys with common initial subsequences.
- Slower if the data is directly accessed on a hard disk drive or some other secondary storage device

Trie implementation

```
class TrieNode {
private:
    bool StrEnds;
    TrieNode *ptr[TrieMaxElem];
public:
    TrieNode();
    void SetStrEnds(){StrEnds = true;}
    void UnSetStrEnds(){StrEnds =
false;}
    bool GetStrEnds(){return StrEnds;}
    void SetPtr(int i, TrieNode*
j){ptr[i]=j;}
    TrieNode* GetPtr(int i){return ptr[i];}
};
```

```
class Trie {
public:
        Trie() ;
        void Readlist();
        void Insert(char x[]);
        bool Member(char x[]);
        void Delete(char x[]);
private:
    TrieNode *root;
    bool Delete(char x[], int i,
    TrieNode *current );
    bool CheckTrieNodeEmpty(TrieNode
*current);
};
```


Trie example

$$
\{a, a b c c, a c c, a c c c, b, b b c b, b b c c, c b, c b b c, c b c, c b c b, c c, c c b, c c b c\}
$$

Trie Delete

```
bool Trie::Delete(char x[], int i, TrieNode *current){
    if (current != 0)
    {if (x[i] == '\0') //if at the end of a string
    {current -> UnSetStrEnds();
            if (CheckTrieNodeEmpty(current))
                    {delete current; return true;} }
        else {
                if (Delete(x,i+1,current->GetPtr(x[i] - 'a')))
                {
                current->SetPtr(x[i] - 'a', 0); //set the entry of current node to Null
                if (i != 0 && CheckTrieNodeEmpty(current)) //not to delete the root
                {delete current; return true;}
            }
            }
    }
    return false;
}
```


Outline

- Time complexity
\square Notation
\square Maximum subsequence sum problem - 4 algorithms ($\mathrm{O}\left(\mathrm{N}^{3}\right), \mathrm{O}\left(\mathrm{N}^{2}\right), \mathrm{O}(\mathrm{Nlog} \mathrm{N}), \mathrm{O}(\mathrm{N})$)
- Tries
. In class exercise

Reference

- Data structure and algorithm analysis in C++ (3rd)
- Professor Suri's lecture note
- http://www.cs.ucsb.edu/~suri/cs130a/cs130a.html
- Professor Qu's lecture note
- http://www.cs.ust.hk/~huamin/COMP171/index.htm
- Lara Deek's slide on TrieNode and Trie

