Universal Hashing

A weakness of hashing

Problem

- For any hash function h, a set of keys exist that can cause the average access time of a hash table to skyrocket.
 - An adversary can pick all the keys which all map to the same bucket

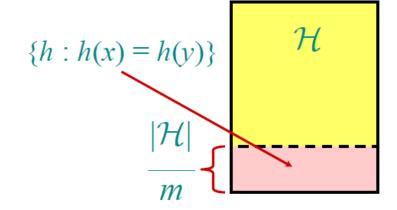
Idea

Choose the hash function at random, independent of the keys

Universal hashing

Definition. Let U be a universe of keys, and let \mathcal{H} be a finite collection of hash functions, each mapping U to $\{0, 1, ..., m-1\}$. We say \mathcal{H} is *universal* if for all $x, y \in U$, where $x \neq y$, we have $|\{h \in \mathcal{H} : h(x) = h(y)\}| = |\mathcal{H}|/m$.

That is, the chance of a collision between x and y is 1/m if we choose h randomly from \mathcal{H} .



Universality is good

Theorem. Let h be a hash function chosen (uniformly) at random from a universal set \mathcal{H} of hash functions. Suppose h is used to hash n arbitrary keys into the m slots of a table T. Then, for a given key x, we have

E[# collisions with x] < n/m.

Proof of theorem

Proof. Let C_x be the random variable denoting the total number of collisions of keys in T with x, and let

 $c_{xy} = \begin{cases} 1 & \text{if } h(x) = h(y), \\ 0 & \text{otherwise.} \end{cases}$

Note:
$$E[c_{xy}] = 1/m \text{ and } C_x = \sum_{y \in T - \{x\}} c_{xy}$$
.

Proof (continued)

$$E[C_x] = E\left[\sum_{y \in T - \{x\}} c_{xy}\right]$$
 • Take expectation of both sides.

$$= \sum_{y \in T - \{x\}} E[c_{xy}]$$
 • Linearity of expectation.

$$= \sum_{y \in T - \{x\}} 1/m$$

$$=\frac{n-1}{m}$$
.

$$= \sum 1/m \qquad \bullet E[c_{xy}] = 1/m.$$

Algebra.

Constructing a set of universal hash functions

Let m be prime. Decompose key k into r + 1digits, each with value in the set $\{0, 1, ..., m-1\}$. That is, let $k = \langle k_0, k_1, ..., k_r \rangle$, where $0 \le k_i < m$.

Randomized strategy:

Pick $a = \langle a_0, a_1, ..., a_r \rangle$ where each a_i is chosen randomly from $\{0, 1, ..., m-1\}$.

Define
$$h_a(k) = \sum_{i=0}^{r} a_i k_i \mod m$$
. Dot product, modulo m

How big is $\mathcal{H} = \{h_a\}$? $|\mathcal{H}| = m^{r+1}$. \leftarrow REMEMBER THIS!

Universality of dot-product hash functions

Theorem. The set $\mathcal{H} = \{h_a\}$ is universal.

Proof. Suppose that $x = \langle x_0, x_1, \dots, x_r \rangle$ and y = $\langle y_0, y_1, ..., y_r \rangle$ be distinct keys. Thus, they differ in at least one digit position, wlog position 0. For how many $h_a \in \mathcal{H}$ do x and y collide?

We must have $h_a(x) = h_a(y)$, which implies that

$$\sum_{i=0}^{r} a_i x_i \equiv \sum_{i=0}^{r} a_i y_i \pmod{m}.$$

Proof (continued)

Equivalently, we have

$$\sum_{i=0}^{r} a_i (x_i - y_i) \equiv 0 \pmod{m}$$

or

$$a_0(x_0 - y_0) + \sum_{i=1}^r a_i(x_i - y_i) \equiv 0 \pmod{m}$$
,

which implies that

$$a_0(x_0 - y_0) \equiv -\sum_{i=1}^r a_i(x_i - y_i) \pmod{m}$$
.

Fact from number theory

Theorem. Let m be prime. For any $z \in \mathbb{Z}_m$ such that $z \neq 0$, there exists a unique $z^{-1} \in \mathbb{Z}_m$ such that

$$z \cdot z^{-1} \equiv 1 \pmod{m}$$
.

Example: m = 7.

Back to the proof

We have

$$a_0(x_0 - y_0) \equiv -\sum_{i=1}^r a_i(x_i - y_i) \pmod{m},$$

and since $x_0 \neq y_0$, an inverse $(x_0 - y_0)^{-1}$ must exist, which implies that

$$a_0 \equiv \left(-\sum_{i=1}^r a_i (x_i - y_i)\right) \cdot (x_0 - y_0)^{-1} \pmod{m}.$$

Thus, for any choices of $a_1, a_2, ..., a_r$, exactly one choice of a_0 causes x and y to collide.

Proof (completed)

- **Q.** How many h_a 's cause x and y to collide?
- **A.** There are m choices for each of $a_1, a_2, ..., a_r$, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

$$a_0 = \left(\left(-\sum_{i=1}^r a_i (x_i - y_i) \right) \cdot (x_0 - y_0)^{-1} \right) \mod m.$$

Thus, the number of h 's that cause x and y to collide is $m^r \cdot 1 = m^p = |\mathcal{H}|/m$.