
CS130A

Review

12/7/2010

Outline

• Performance analysis

• LZW compression

• Heap

• RB-tree

• B-tree

• Union-Find

• Sorting

Big-Oh

• f(N) = O(g(N))

• There are positive constants c and n0 such that

f(N) <=c g(N) when N >= n0

• The growth rate of f(N) is less than or equal to

the growth rate of g(N)

• g(N) is an upper bound on f(N)

• Example

– Let f(N) = 2N2. Then

• f(N) = O(N4)

• f(N) = O(N3)

• f(N) = O(N2) (best answer, asymptotically tight)

• For loops
– at most the running time of the statements inside the for-loop
(including tests) times the number of iterations.

• Nested for loops

– the running time of the statement multiplied by the product of
the sizes of all the for-loops

– O(N2)

• Consecutive for loops

– These just add

– O(N) + O(N2) = O(N2)

General Rules (algorithm analysis)

Exercise 2.1[w]

• Order the following functions by growth

rate:

– N, N1.5, N2, NlogN, NloglogN, Nlog2N,

Nlog(N2), 2/N, 2N, 37, N2logN, N3

• Answer:

2/N, 37, N, NloglogN, NlogN, NlogN2, Nlog2N, N1.5, N2, N2logN, N3, 2N

Exercise 2.7[w]

• Give an analysis of the Big-Oh running

time for the following program fragments:

sum = 0;

for(i=0; i<n; i++)

for(j=0; j<n*n; j++)

sum++;

a

sum = 0;

for(i=0; i<n; i++)

for(j=0; j<i; j++)

sum++;

b

sum = 0;

for(i=0; i<n; i++)

for(j=0; j<i*i; j++)

for(k=0; k<j; k++)

sum++;

c

sum = 0;

for(i=1; i<n; i++)

for(j=1; j<i*i; j++)

if(j%i == 0)

for(k=0; k<j; k++)

sum++;

d

Exercise 2.27[w]

• The input is an N by N matrix of numbers

that is already in memory. Each individual

row is increasing from left to right. Each

individual column is increasing from top to

bottom. How would you decides if a

number X is in the matrix? What is its

worst-case complexity in Big-Oh

LZW algorithm

• Encoding:

– Longest Prefix Matching(eg. matched string X)

in the code table

• Output the code for X

– Add a new entry for string Xc, c is a char

– Move pointer to c’s position

– Repeat

• Example:

– abbbaaab

LZW algorithm
Output: string(first CodeWord);

while(there are more CodeWords){

if(CurCodeWord is in the Dict)

output: string(CurCodeWord)

else

output: PreviousOutput + FC(PreviousOutput);

insert in the Dictionary: PreviousOutput +
FC(CurrentOutput);

}

Example:

0 2 3 2 4

Heap

• Usually in array representation

• Key (for Max-Heap):

– For any node v and its parent p, p.key>=v.key

• Insert

– Put at the end of the array. Bottom up

– Delete/Extract Max: Replace the root with the

last element. Top-down fix

Heap

• Example

– We have the following elements in array X

• X = [1 3 5 7 9 11 13]

– Transform the array into a max heap in O(n)

time. Draw the resulting max heap

13

9 11

7 3 1 5

• Delete the smallest element from the

following Binomial Heap

Binomial Heap

7 6 4

13
10 15

17

Binary Heap & Binomial Heap

O (log n)O (log n)Delete

O (log n)O (log n)Decrease-Key

O (nlog n) -> O (n)O (log n)Merge

O (log n)O (log n)Extract-Min

O (1)O (log n)Minimum

O (log n)O (log n)Insert

O (1)O (1)Make-Heap

Binary HeapBinomial HeapProcedure

Exercise
30

20 45

40 50

60

Insert 70, 80

23

14 52

29 74

99

11

574025

Insert 26

Exercise

17

9 19

13 21

20

7 18

1511

10 14

8

Delete 18

B-tree delete exercise

- Borrow from right sibling

- Exchange with smallest of right sub-tree

- Borrow from right sibling

- Exchange with smallest of right sub-tree

[15 23]

[8 11] [17] [35]

[4 6] [10] [12] [16] [21] [28] [43]

Delete 16

Union-find

• Used to maintain equivalent classes.

• Union(x,y): Group x and y into one class
– Initially each element is a class. N different classes in
total

• Find(x): Returns the representative of x’s class
– If x and y belongs to same class, Find(x) == Find(y)

• Binary Tree/Array Representation.

• Two optimizations:
– For Union: Weighted Union

– For Find: Path compression

Union by rank

• Tow choices for the union operation

Choice 1:

Root = e
Choice 2:

Root = h

Path compression

• A little extra computation performed during

find, that makes the tree shorter

Exercise

• Show the resulting tress after each union-

find operations. Use weighted union &

path compression

19

28 27 30

36

16 31

3539

24 29

22

25 23 18

20

21 17

2638

34 33 37 32

Find(21), Find(18), Find(36), Find(26), Find(23), Union(19,22)

Heap Sort

• Sort the following array

– 19, 31, 23, 66, 73, 79, 45, 87

– Show the array after each iteration

Euler Circuit

• Euler circuit

– Start from a vertex v, travel all edges exactly once

and come back to v

– Euler theorem: If the degree of any vertex is even, the

graph exists an EC

– Barnard’s algorithm

– Euler(v)

• For vertex w that is adjacent to v and (v,w) is not marked

– Mark (v,w)

– Path = (v,w) + Euler(w) + Path

• Return Path

Euler Circuit

• Example

1

2

3 4

5
6

Reference

• Shuo Wu’s review

– http://www.cs.ucsb.edu/~teo/cs130a.f10/revie
w.pdf

• ucsd cs101

– http://cseweb.ucsd.edu/~dasgupta/101/lec9.p
df

• sjsu cs146

– www.cs.sjsu.edu/~lee/cs146/24CS146JCMer
ge.ppt

